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An efficient synthetic protocol of fully substituted a-pyrones has been developed starting from the Bay-
lis–Hillman adducts. Subsequent Diels–Alder reaction of the a-pyrones and DMAD produced poly-substi-
tuted aromatic compounds in high yields.
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Recently, syntheses of a variety of acyclic and cyclic compounds
including various aromatic and heterocyclic compounds have been
carried out starting from the Baylis–Hillman adducts.1 Based on
the importance of poly-substituted aromatic compounds, the syn-
thesis of highly substituted benzenes and naphthalenes in a regio-
selective manner has been regarded as the most fruitful chemical
transformation in Baylis–Hillman chemistry.1

a-Pyrones have been used as important synthetic intermedi-
ates2–6 and are found in a wide variety of biologically interesting
natural substances.4 Thus, considerable efforts have been devoted
to the synthesis of a-pyrones2,5 and related compounds3 by
numerous approaches involving transition metal-catalyzed reac-
ll rights reserved.
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tions.2a,c,d,f Among the synthetic usefulness of a-pyrones, Diels–Al-
der cycloaddition has been used as an efficient method to reach
highly substituted aromatic compounds.6

In these contexts, we decided to develop an efficient synthetic
method of highly substituted a-pyrones 7 and their chemical
transformations including Diels–Alder reaction with DMAD
(dimethylacetylene dicarboxylate) to benzene derivatives 8 and
their oxidation with DDQ (1,2-dichloro-4,5-dicyanobenzoquinone)
to naphthalene derivatives 9 when R1-R2 is a cyclohexane moiety
(vide infra), as shown in Scheme 1. Our synthetic rationale of
a-pyrone skeleton is a combination of the first introduction of a
suitable ketone derivative 2 at the secondary position of the Bay-
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Table 1
Synthesis of starting materials 4a–h from 1 and 2a–h

Ph
COOMe

R1

O
R2

1. DABCO (1.1 equiv)
    CH3CN, rt, 30 min

2. ketone 2 (1.2-3.0 equiv)
    NaOH (1.2 equiv), rt, 24 h

LiOH (5.0 equiv)
aq THF, reflux, 24 h

Ph
COOH

R1

O
R2

1

3a-h (syn/anti mixture) 4a-h (syn/anti mixture)

Entry Ketone 2a 3a–hb (%) 4a–hc (%)

1 Deoxybenzoin (2a) 3a (78, 2:1) 4a (97)
2 Desoxyanisoin (2b) 3b (75, 2:1) 4b (95)
3 Propiophenone (2c) 3c (62, 2:1) 4c (90)
4 a-Tetralone (2d) 3d (62, 3:2) 4d (89)
5 Acetophenone (2e) 3e (60) 4e (93)
6 Cyclohexanone (2f) 3f (54, 9:1) 4f (92)
7 4-Methlcyclohexanone (2g) 3g (44, 2:1) 4g (92)
8 4-Phenylcyclohexanone (2h) 3h (45, 4:1) 4h (92)

a Ketone 2a–d (1.2 equiv) and ketone 2e–h (3.0 equiv) were used.
b The ratio of syn/anti is arbitrary and measured in 1H NMR.
c Crude product (syn/anti mixture) and not characterized.

Table 2
Synthesis of a-pyrones 7a–h from 4a–h

4a-h O

Ph

R1

O

R2 O

Ph

R1

O

R2
TFAA (2.0 equiv)
CH2Cl2, rt, 2 h

DBU (0.5 equiv)
CH3CN, rt, 1 h

5a-h 7a-h

Entry 5 (%) 7 (%)

1
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Ph

Ph

O

Ph
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Table 2 (continued)

Entry 5 (%) 7 (%)

6
O

Ph O

5f + 6f (70)a

O

Ph O

O

Ph O
7f (56)b

+ 6f (22)b

7
O

Ph O

5g + 6g (84)a

O

Ph O

O

Ph O
7g (40)b

+ 6g (22)b

8 O

Ph O

Ph

5h + 6h (68)a

O

Ph O

Ph

O

Ph O

Ph

7h (42)b

+ 6h (21)b

aInseparable mixture of 5f–h and 6f–h.
bSee Scheme 2.
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lis–Hilman adduct via the DABCO salt concept7 and the following
cyclization to a-pyrone as reported previously.5

As summarized in Table 1, synthesis of starting materials d-keto
acids 4a–h was carried out by the following sequential processes:
(i) synthesis of cinnamyl bromide 1 from Baylis–Hillman adduct as
reported,8 (ii) introduction of various ketone derivatives 2a–h at
the secondary position of the Baylis–Hillman adduct via the DABCO
salt of 1 to form 3a–h,7,9 and (iii) hydrolysis of 3a–h with LiOH in
aqueous THF to make 4a–h.9 The d-keto esters 3a–h and d-keto
acids 4a–h were obtained as an inseparable syn/anti mixture and
we used them in the next cyclization without separation.

With d-keto acids 4a–h, we synthesized a-pyrones 7a–h via the
sequential lactonization of 4a–h with TFAA to methylene lactones
5a–h and the following DBU-catalyzed isomerization.9,10 The re-
sults are summarized in Table 2. The yields of methylene lactones
5a–e were good (83–91%) and the following DBU-catalyzed isom-
erization produced a-pyrones 7a–e in good yields (74–87%) also.
However, exo-methylene compounds 6f–h were formed together
in appreciable amounts during the synthesis of 5f–h (entries
6–8) and the separation of 5f–h/6f–h was very difficult. However,
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treatment of the mixture 5f/6f with DBU produced desired a-pyr-
one 7f (56%). During the isomerization process, 6f (22%) was recov-
ered without change very fortunately as schematically explained in
Scheme 2. The situation was same for the mixtures 5g/6g and 5h/
6h. Compound 6f was obtained as a single isomer while 6g and 6h
were a diastereomeric mixture (1:1) due to the presence of the
substituent -R at 6-position.11 In 1H NMR spectrum of compound
6f, as an example, the proton at 4-position (d = 3.36 ppm) coupled
with the proton at 4a-position with a large coupling constant
(J = 12.9 Hz), which stated that the two protons are in trans-rela-
tionships, as shown in Scheme 2.

As a next trial, we examined the synthesis of fully substituted
aromatic compounds with the synthesized a-pyrone derivatives
(Schemes 3–5). The reaction of 7a and DMAD in p-xylene in a
sealed tube afforded a fully substituted benzene 8a in 98% via
the [4+2] cycloaddition and concomitant decarboxylation process
(Scheme 3).6 Compound 8e was synthesized from 7e in 94% simi-
larly. Diels–Alder reaction of 7d and DMAD also produced 8d
(94%), which was converted into phenanthrene derivative 9d via
oxidation with DDQ in o-dichlorobenzene (ODCB) in 93% (Scheme
4). Cyclohexane-fused compounds 7f–h were also converted into
naphthalene derivatives 9f–h, via the sequential Diels–Alder reac-
tion with DMAD to 8f–h (96–99%) and the following oxidation
with DDQ (Scheme 5). It is interesting to note that oxidation of
7f with DDQ produced compound 10, however, Diels–Alder reac-
tion of 10 and DMAD did not produce compound 9f at all, as de-
picted also in Scheme 5.

In summary, we developed an efficient synthetic protocol of
poly-substituted a-pyrones including chromen-2-one. In addition,
we prepared various aromatic compounds including poly-substi-
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tuted benzenes, naphthalene, and phenanthrene from the prepared
a-pyrones by using DDQ oxidation and/or Diels–Alder reaction
with DMAD.
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C, 83.31; H, 5.59. Found: C, 83.24; H, 5.76.
Compound 7f: 56%; colorless oil; IR (film) 1712, 1642, 1558 cm�1; 1H NMR (CDCl3,
300 MHz) d 1.56–1.64 (m, 2H), 1.66–1.80 (m, 2H), 1.82 (s, 3H), 1.93–1.97 (m, 2H),
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131.41, 132.03, 133.94, 137.77, 138.63, 138.71, 139.38, 143.33, 144.46, 168.82,
168.97; ESIMS m/z 437 (M++1). Anal. Calcd for C29H24O4: C, 79.80; H, 5.54. Found:
C, 79.97; H, 5.78.
Compound 8d: 94%; white solid, mp 174–175 �C; IR (KBr) 1736, 1221 cm�1; 1H
NMR (CDCl3, 300 MHz) d 2.07 (s, 3H), 2.38–2.42 (m, 2H), 2.64–2.69 (m, 2H), 3.76
(s, 3H), 3.91 (s, 3H), 7.07–7.14 (m, 2H), 7.17–7.25 (m, 3H), 7.33–7.49 (m, 4H); 13C
NMR (CDCl3, 75 MHz) d 17.90, 27.71, 28.85, 52.46, 52.53, 126.38, 126.63, 127.37,
127.50, 127.83, 128.53, 128.76, 128.79, 131.71, 131.87, 132.98, 133.15, 138.48,
139.64, 140.23, 143.12, 169.34, 170.53; ESIMS m/z 387 (M++1). Anal. Calcd for
C25H22O4: C, 77.70; H, 5.74. Found: C, 77.89; H, 5.48.
Compound 9d: 93%; white solid, mp 67–69 �C; IR (KBr) 1736, 1282 cm�1; 1H NMR
(CDCl3, 300 MHz) d 2.21 (s, 3H), 3.97 (s, 3H), 3.98 (s, 3H), 7.20–7.25 (m, 3H), 7.43–
7.61 (m, 6H), 7.80–7.84 (m, 1H), 8.19–8.23 (m, 1H); 13C NMR (CDCl3, 75 MHz) d
18.06, 52.73, 52.92, 124.64, 125.58, 125.77, 126.27, 127.06, 127.60, 128.45,
128.57, 128.68, 128.72, 128.92, 129.74, 130.74, 132.27, 132.43, 132.70, 139.05,
142.27, 169.58, 171.47; ESIMS m/z 385 (M++1). Anal. Calcd for C25H20O4: C, 78.11;
H, 5.24. Found: C, 78.05; H, 5.49.
Compound 9h: 68%; colorless oil; IR (film) 1732, 1212 cm�1; 1H NMR (CDCl3,
300 MHz) d 2.22 (s, 3H), 3.96 (s, 3H), 4.04 (s, 3H), 7.24–7.56 (m, 11H), 7.77 (dd,
J = 8.7 and 1.8 Hz, 1H), 8.27 (d, J = 8.7 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 18.39,
52.58, 52.76, 124.58, 126.23, 126.49, 127.30, 127.35, 127.64, 127.71, 128.71,
128.81 (2C), 129.74, 130.16, 132.22, 133.83, 138.70, 139.88, 140.45, 142.87,
168.22, 169.25; ESIMS m/z 411 (M++1). Anal. Calcd for C27H22O4: C, 79.01; H, 5.40.
Found: C, 79.33; H, 5.74.

10. For DBU-mediated isomerization, see: (a) Kim, K. H.; Lee, H. S.; Kim, J. N.
Tetrahedron Lett. 2009, 50, 1249–1251; (b) Kim, S. C.; Lee, H. S.; Lee, Y. J.; Kim, J.
N. Tetrahedron Lett. 2006, 47, 5681–5685; (c) Lee, M. J.; Lee, K. Y.; Gowrisankar,
S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1355–1358.

11. It is interesting to note that the phenyl group at 4-position of 7g and 7h showed
the presence of six carbon peaks in their 13C NMR spectrum, presumably due to
an asymmetry effect provided by the substituent at 6-position (–CH3 or phenyl).
The situation is same for the phenyl group of compounds 8g and 8h.


